Cho hai khoảng \(A\left(-\infty;m\right)\); \(B\left(3;+\infty\right)\). Tìm \(A\cup B\)(Biện luận theo m)
1) cho các tập hợp sau : A=(m-1:m+3);B=(-1;1) vs m thuộc R. Định m sao cho:
a)\(A\subset B\) b)\(B\subset A\) c) \(A\cap B=\varnothing\)
2) Cho hai khoảng M= (m;6), N= (-5;2). tìm tất cả giá trị để \(M\cup N\) là một khoảng.
3) Cho A=(\(-\infty\);9a); B=(\(\frac{4}{a}\);\(+\infty\)) với a<0. Tìm điều kiện của a để \(A\cap B\ne\varnothing\)
Cho các tập hợp \(A=\left(-3;-1\right)\cup\left(1;2\right);B=\left(-\infty;m\right);C=\left(2m;+\infty\right)\) tìm m để\(A\cap B\cap C\ne\varnothing\)
cho \(A=\left(-\infty;1\right)\)
\(B=\left(m;+\infty\right)\)
(m là tham số)
biện luận theo m tập \(A\cap B\)
Cho A=\((-\infty;m+1]\) , B=\(\left(2m-3;+\infty\right)\)
Tính :a) A\(\cap\)B = \(\varnothing\)
b) A \(\cap\)B = 1 khoảng
c) A\(\cup\)B = R
Cho các tập hợp A=(-3;4]; B=[-5;1)
a, Tìm các tập hợp A\(\cap\)B; \(A\cup B\) ; A\B; CRA
b, Cho tập C={ x∈Z: x2-6|x|+5=0}; Tìm tất cả tập con của \(B\cap C\)
c, Cho m là số thực âm. Tìm tất cả các giá trị của m để A⊂D với D=(-4; \(1-\dfrac{1}{m}\) )
Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để:
a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\))
b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\))
c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\))
d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\))
Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R
Bài 3:
a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\)
b, Viết tập A gồm các phần tử x thỏa mãn điều kiện\(\left\{{}\begin{matrix}x\le3\\x+1\ge\\x< 0\end{matrix}\right.0}\)
với x+1\(\ge0\)dưới dạng tập số.
Bài 4:
Cho A=(m;m+2) và B+(n;n+1). Tìm điều kiện của các số m và n để A\(\cap\)B=\(\varnothing\)
Bài 5:
Cho tập hợp A=\(\left(m-1;\dfrac{m+1}{2}\right)\)và B=\(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\). Tìm m để:
a, \(A\cap B\ne\varnothing\)
b, \(A\subset B\)
c, \(B\subset A\)
d, \(A\cap B=\varnothing\)
Bài 6:Cho 2 tập khác rỗng: A=(m-1 ; 4) và B=(-2 ; 2m+2), với ác định m để:
a, A\(\cap B\ne\varnothing\)
b, A\(\subset B\)
c,\(B\subset A\)
Cho 2 tập hợp: A = (\(\left(-\infty;2\right)\cup\) [5; +\(\infty\)) và B = [m+1; \(\dfrac{3m+5}{2}\)]. Có bao nhiêu giá trị nguyên của m nhỏ hơn 10 để B \(\subset\) A
Cho A=(-\(\infty\);5) : B=(2m+1; +\(\infty\))
Tim m de A\(\cap\)B=\(\varnothing\)
b) cho A=[0;2) vaf B=(m-1; m+3)
tim m de A\(\cap\)B\(\ne\)0