a: \(A\cap B=\left(-3;1\right)\)
\(A\cup B\)=[-5;4]
A\B=[1;4]
\(C_RA\)=R\A=(-∞;-3]\(\cap\)(4;+∞)
b: C={1;-1;5;-5}
\(B\cap C=\left\{-5;-1\right\}\)
Các tập con là ∅; {-5}; {-1}; {-5;-1}
a: \(A\cap B=\left(-3;1\right)\)
\(A\cup B\)=[-5;4]
A\B=[1;4]
\(C_RA\)=R\A=(-∞;-3]\(\cap\)(4;+∞)
b: C={1;-1;5;-5}
\(B\cap C=\left\{-5;-1\right\}\)
Các tập con là ∅; {-5}; {-1}; {-5;-1}
cho tập hợp A={xϵ R |\(\dfrac{2x}{x^2+1}\)≥1} ; B là tập hợp tất cả các giá trị nguyên của b để phương trình x2 -2bx+4=0 vô nghiệm .Tìm số phần tử chung của hai tập hợp trên
a/ Tìm tất cả giá trị của m để (-∞ ; m+1) ∩ [ 2m + 3; + ∞ ) = ∅
b/ Cho tập hợp A = {1;2;3;4;5;6} Tìm tất cả các tập con của tập A gồm ba phần tử sao cho tổng các phân tử này là một số chẵn
Cho hai tập hợp A = [-3 ;-1] \(\cup\) [2; 4 ], B = (m - 1;m+ 2). Tìm m để A\(\cap\) B ≠ \(\varnothing\)
a. Cho tập hợp A= {n2 + n +1 /n ∈ N} và B={2k+1\ k ∈ N}. Chứng minh A⊂B
b.Cho A=(0;3] và B=(m;4). Tìm tất cả cá giá trị của m để A∩B#Ø
1) cho các tập hợp sau : A=(m-1:m+3);B=(-1;1) vs m thuộc R. Định m sao cho:
a)\(A\subset B\) b)\(B\subset A\) c) \(A\cap B=\varnothing\)
2) Cho hai khoảng M= (m;6), N= (-5;2). tìm tất cả giá trị để \(M\cup N\) là một khoảng.
3) Cho A=(\(-\infty\);9a); B=(\(\frac{4}{a}\);\(+\infty\)) với a<0. Tìm điều kiện của a để \(A\cap B\ne\varnothing\)
Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để:
a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\))
b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\))
c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\))
d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\))
Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R
Bài 3:
a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\)
b, Viết tập A gồm các phần tử x thỏa mãn điều kiện\(\left\{{}\begin{matrix}x\le3\\x+1\ge\\x< 0\end{matrix}\right.0}\)
với x+1\(\ge0\)dưới dạng tập số.
Bài 4:
Cho A=(m;m+2) và B+(n;n+1). Tìm điều kiện của các số m và n để A\(\cap\)B=\(\varnothing\)
Bài 5:
Cho tập hợp A=\(\left(m-1;\dfrac{m+1}{2}\right)\)và B=\(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\). Tìm m để:
a, \(A\cap B\ne\varnothing\)
b, \(A\subset B\)
c, \(B\subset A\)
d, \(A\cap B=\varnothing\)
Bài 6:Cho 2 tập khác rỗng: A=(m-1 ; 4) và B=(-2 ; 2m+2), với ác định m để:
a, A\(\cap B\ne\varnothing\)
b, A\(\subset B\)
c,\(B\subset A\)
Cho các tập hợp sau:A={-2;0;2;4;8},
B={x€Z:|x|≤2},C={x€R:(X² -2x-3)(x² - 3)=0}.Hãy tìm các tập hợp sau:
a)A∩(B∩C)
b)A hợp (B∩C)
c)A∩(B∩C)
d)A\(B∩C)
e)A\(B\C)
Cho hai tập hợp A=[m-4;1], B=(-3;m]. Tính tổng tất cả các giá trị nguyên của m để A\(\cup\)B=B
Cho tập A= (-1,5) , B= [0,4] , C= (-5,0] Tìm A∩B, B∪C, A∩C, (A∪B)∩C