Đường tròn tâm \(I\left(3;-1\right)\) bán kính \(R=\sqrt{3^2+\left(-1\right)^2-6}=2\)
\(\overrightarrow{IA}=\left(-2;4\right)\Rightarrow IA=\sqrt{\left(-2\right)^2+4^2}=2\sqrt{5}>R\)
\(\Rightarrow A\) nằm ngoài đường tròn
Gọi phương trình tiếp tuyến d qua A có dạng:
\(a\left(x-1\right)+b\left(y-3\right)=0\Leftrightarrow ax+by-a-3b=0\) (với \(a^2+b^2\ne0\))
d tiếp xúc (C) \(\Leftrightarrow d\left(I;d\right)=R\)
\(\Leftrightarrow\frac{\left|3a-b-a-3b\right|}{\sqrt{a^2+b^2}}=2\Leftrightarrow\left|a-2b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow\left(a-2b\right)^2=a^2+b^2\)
\(\Leftrightarrow a^2-4ab+4b^2=a^2+b^2\)
\(\Leftrightarrow3b^2-4ab=0\Rightarrow\left[{}\begin{matrix}b=0\\3b=4a\end{matrix}\right.\)
Chọn \(b=4\Rightarrow a=3\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x-1=0\\3x+4y-15=0\end{matrix}\right.\)