Theo bài ra, ta có: \(C=75\left(4^{2001}+4^{2000}+4^{1999}+...+4^2+4+1\right)+25\)
Đặt \(S=4^{2001}+4^{2000}+4^{1999}+...+4^2+4+1\)
\(\Rightarrow4S=4^{2002}+4^{2001}+4^{2000}+...+4^3+4^2+4\)
\(\Rightarrow4S-S=4^{2002}+4^{2001}+4^{2000}+...+4^3+4^2+4-4^{2001}-4^{2000}-4^{1999}-...4^2-4-1\)
\(\Rightarrow3S=4^{2002}-1\)
\(\Rightarrow S=\dfrac{4^{2002}-1}{3}\)
Khi đó \(C=75.\dfrac{4^{2002}-1}{3}+25=\dfrac{75}{3}.\left(4^{2002}-1\right)+25=25\left(4^{2002}-1\right)+25=25\left(4^{2002}-1+1\right)=25.4^{2002}⋮4^{2002}\)
Vậy \(C⋮4^{2002}\left(đpcm\right)\)