Lời giải:
ĐKXĐ:......
a) Ta có:
\(\frac{3+\sqrt{x}}{3-\sqrt{x}}-\frac{3-\sqrt{x}}{3+\sqrt{x}}-\frac{4x}{x-9}=\frac{(3+\sqrt{x})^2-(3-\sqrt{x})^2}{(3-\sqrt{x})(3+\sqrt{x})}-\frac{4x}{x-9}\)
\(=\frac{9+x+6\sqrt{x}-(9+x-6\sqrt{x})}{9-x}-\frac{4x}{x-9}=\frac{-12\sqrt{x}}{x-9}-\frac{4x}{x-9}=\frac{-4\sqrt{x}(3+\sqrt{x})}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{4\sqrt{x}}{3-\sqrt{x}}\)
Và:
\(\frac{5}{3-\sqrt{x}}-\frac{4\sqrt{x}+2}{3\sqrt{x}-x}=\frac{5\sqrt{x}}{3\sqrt{x}-x}-\frac{4\sqrt{x}+2}{3\sqrt{x}-x}=\frac{\sqrt{x}-2}{\sqrt{x}(3-\sqrt{x})}\)
Do đó:
\(C=\frac{4\sqrt{x}}{3-\sqrt{x}}: \frac{\sqrt{x}-2}{\sqrt{x}(3-\sqrt{x})}=\frac{4\sqrt{x}}{3-\sqrt{x}}.\frac{\sqrt{x}(3-\sqrt{x})}{\sqrt{x}-2}=\frac{4x}{\sqrt{x}-2}\)
b)
Nếu $C\leq 0$ thì \(|C|=-C\) (không thỏa mãn)
Nếu $C>0$ thì \(|C|=C>0>-C\) (thỏa mãn)
Vậy để \(|C|> -C\) thì \(C>0\Leftrightarrow \frac{4x}{\sqrt{x}-2}>0\Leftrightarrow \sqrt{x}-2>0\) (do \(x>0)\)
\(\Leftrightarrow x> 4\)
Kết hợp đkxđ suy ra điều kiện của $x$ là \(x>4; x\neq 9\)
c)
\(C^2=40C\Leftrightarrow C(C-40)=0\Leftrightarrow \left[\begin{matrix} C=0\\ C=40\end{matrix}\right.\)
Nếu $C=0$ thì \(\frac{4x}{\sqrt{x}-2}=0\Rightarrow x=0\) (không t/m ĐKXĐ)
Nếu \(C=40\Leftrightarrow \frac{4x}{\sqrt{x}-2}=40\Leftrightarrow x=10(\sqrt{x}-2)\)
\(\Rightarrow \sqrt{x}=5\pm \sqrt{5}\Rightarrow x=(5\pm \sqrt{5})^2\)