Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Na

Cho bt C= (\(\dfrac{3+\sqrt{x}}{3-\sqrt{x}}-\dfrac{3-\sqrt{x}}{3+\sqrt{x}}-\dfrac{4x}{x-9}\)) : ( \(\dfrac{5}{3-\sqrt{x}}-\dfrac{4\sqrt{x}+2}{3\sqrt{x}-x}\))

a) Rút gọn C

b) tìm giá trị của x để: |C| > -C

c) Tìm giá trị của x để: C\(^{^2}\)= 40C

Akai Haruma
20 tháng 9 2018 lúc 22:48

Lời giải:

ĐKXĐ:......

a) Ta có:

\(\frac{3+\sqrt{x}}{3-\sqrt{x}}-\frac{3-\sqrt{x}}{3+\sqrt{x}}-\frac{4x}{x-9}=\frac{(3+\sqrt{x})^2-(3-\sqrt{x})^2}{(3-\sqrt{x})(3+\sqrt{x})}-\frac{4x}{x-9}\)

\(=\frac{9+x+6\sqrt{x}-(9+x-6\sqrt{x})}{9-x}-\frac{4x}{x-9}=\frac{-12\sqrt{x}}{x-9}-\frac{4x}{x-9}=\frac{-4\sqrt{x}(3+\sqrt{x})}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{4\sqrt{x}}{3-\sqrt{x}}\)

Và:

\(\frac{5}{3-\sqrt{x}}-\frac{4\sqrt{x}+2}{3\sqrt{x}-x}=\frac{5\sqrt{x}}{3\sqrt{x}-x}-\frac{4\sqrt{x}+2}{3\sqrt{x}-x}=\frac{\sqrt{x}-2}{\sqrt{x}(3-\sqrt{x})}\)

Do đó:
\(C=\frac{4\sqrt{x}}{3-\sqrt{x}}: \frac{\sqrt{x}-2}{\sqrt{x}(3-\sqrt{x})}=\frac{4\sqrt{x}}{3-\sqrt{x}}.\frac{\sqrt{x}(3-\sqrt{x})}{\sqrt{x}-2}=\frac{4x}{\sqrt{x}-2}\)

b)

Nếu $C\leq 0$ thì \(|C|=-C\) (không thỏa mãn)

Nếu $C>0$ thì \(|C|=C>0>-C\) (thỏa mãn)

Vậy để \(|C|> -C\) thì \(C>0\Leftrightarrow \frac{4x}{\sqrt{x}-2}>0\Leftrightarrow \sqrt{x}-2>0\) (do \(x>0)\)

\(\Leftrightarrow x> 4\)

Kết hợp đkxđ suy ra điều kiện của $x$ là \(x>4; x\neq 9\)

c)

\(C^2=40C\Leftrightarrow C(C-40)=0\Leftrightarrow \left[\begin{matrix} C=0\\ C=40\end{matrix}\right.\)

Nếu $C=0$ thì \(\frac{4x}{\sqrt{x}-2}=0\Rightarrow x=0\) (không t/m ĐKXĐ)

Nếu \(C=40\Leftrightarrow \frac{4x}{\sqrt{x}-2}=40\Leftrightarrow x=10(\sqrt{x}-2)\)

\(\Rightarrow \sqrt{x}=5\pm \sqrt{5}\Rightarrow x=(5\pm \sqrt{5})^2\)

Na
19 tháng 9 2018 lúc 23:50

Akai Haruma giúp e với hihi


Các câu hỏi tương tự
Na
Xem chi tiết
Han Sara
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
phạm kim liên
Xem chi tiết
nguyễn thu hằng
Xem chi tiết
Đặng Tuyết Đoan
Xem chi tiết
Chóii Changg
Xem chi tiết
Lê Hương Giang
Xem chi tiết