điều kiện xác định : \(x>0;x\ne9\)
a) ta có : \(C=\left(\dfrac{3+\sqrt{x}}{3-\sqrt{x}}-\dfrac{3-\sqrt{x}}{3+\sqrt{x}}-\dfrac{4x}{x-9}\right):\left(\dfrac{5}{3-\sqrt{x}}-\dfrac{4\sqrt{x}+2}{3\sqrt{x}-x}\right)\)
\(\Leftrightarrow C=\left(\dfrac{3+\sqrt{x}}{3-\sqrt{x}}-\dfrac{3-\sqrt{x}}{3+\sqrt{x}}+\dfrac{4x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\dfrac{5}{3-\sqrt{x}}-\dfrac{4\sqrt{x}+2}{\sqrt{x}\left(3-\sqrt{x}\right)}\right)\) \(\Leftrightarrow C=\left(\dfrac{3+\sqrt{x}}{3-\sqrt{x}}-\dfrac{3-\sqrt{x}}{3+\sqrt{x}}+\dfrac{4x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\dfrac{5\sqrt{x}-4\sqrt{x}-2}{\sqrt{x}\left(3-\sqrt{x}\right)}\right)\) \(\Leftrightarrow C=\left(\dfrac{\left(3+\sqrt{x}\right)^2-\left(3-\sqrt{x}\right)^2+4x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\dfrac{\sqrt{x}-2}{\sqrt{x}\left(3-\sqrt{x}\right)}\right)\) \(\Leftrightarrow C=\left(\dfrac{12\sqrt{x}+4x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right)\left(\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\right)\) \(\Leftrightarrow C=\left(\dfrac{4\sqrt{x}\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right)\left(\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\right)=\dfrac{4x}{\sqrt{x}-2}\)b) để \(\left|C\right|>-C\) \(\Leftrightarrow C< 0\) \(\Leftrightarrow\dfrac{4x}{\sqrt{x}-2}< 0\) \(\Leftrightarrow\sqrt{x}-2< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0< x< 4\)
c) để \(C^2=40C\Leftrightarrow C^2-40C=0\Leftrightarrow C\left(C-40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}C=0\\C=40\end{matrix}\right.\)
+) \(C=0\Leftrightarrow\dfrac{4x}{\sqrt{x}-2}=0\) \(\Leftrightarrow x=0\left(loại\right)\)
+) \(C=40\Leftrightarrow\dfrac{4x}{\sqrt{x}-2}=40\Leftrightarrow x=10\sqrt{x}-20\)
\(\Leftrightarrow x-10\sqrt{x}+20=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=5+3\sqrt{5}\left(N\right)\\\sqrt{x}=5-3\sqrt{5}\left(L\right)\end{matrix}\right.\)
ta có : \(\sqrt{x}=5+3\sqrt{5}\Leftrightarrow x=70+30\sqrt{5}\)
vậy ..............................................................................................................................