Cho bốn số thực a,b,x,y bất kì đồng thời thỏa mãn các điều kiện : \(x\ge a\ge0,y\ge b\ge0\) và \(\frac{x-y}{2}=\frac{a-b}{3}\) . . Tìm giá trị nhỏ nhất của P = (x + 2a)(y + 2b) theo a và b
Cho các số x,y ϵ R thỏa mãn hệ bất phương trình sau \(\left\{{}\begin{matrix}x+y\ge3\\x\ge0\\y\ge0\\2x+y\le6\end{matrix}\right.\). Tìm giá trị nhỏ nhất và lớn nhất của biểu thức: F = 5x-6y+2021
1. Cho số thực x. CMR: \(x^4+5>x^2+4x\)
2. Cho số thực x, y thỏa mãn x>y. CMR: \(x^3-3x+4\ge y^3-3y\)
3. Cho a, b là số thực dương thỏa mãn \(a^2+b^2=2\). CMR: \(\left(a+b\right)^5\ge16ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
Biểu thức L=y-x, với x và y thỏa mãn hệ bất pt \(\left\{{}\begin{matrix}2x+3y-6\le0\\x\ge0\\2x-3y-1\le0\end{matrix}\right.\), đạt Max tại a và đạt Min tại b. Tính a và b
Cho x, y, z là các số thực dương thỏa mãn điều kiện \(x^2+y^2+z^2=3\). CMR : \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{9}{x+y+z}\)
cho 2 số dương x,y thay đổi thỏa mãn điều kiện x+y≥4. Tìm GTNN của biểu thức:
A=\(\frac{3x^2+4}{4x}+\frac{2+y^2}{y^2}\)
Cho \(x\ge y\ge z\ge0\). Chứng minh BĐT sau
a/ \(xy^3+yz^3+zx^3\ge xz^3+zy^3+yx^3\)
b/ \(\dfrac{x^2y}{z}+\dfrac{y^2z}{x}+\dfrac{z^2x}{y}\ge\dfrac{x^2z}{y}+\dfrac{y^2x}{z}+\dfrac{z^2y}{x}\)
Mọi người ơi giúp mình với
Câu 1: Cho x, y, z > 0 và \(5\left(x^2+y^2+z^2\right)=6\left(xy+yz+xz\right)\)Tìm giá trị nhỏ nhất của
\(P=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Câu 2: Cho a, b, c >0 và \(\left\{{}\begin{matrix}ab+bc+ca>0\\a\ge c\end{matrix}\right.\)Tìm giá trị nhỏ nhất của
\(p=\frac{\left(a+b\right)}{\left(b+c\right)}+\frac{\left(b+c\right)}{\left(c+a\right)}+\frac{\left(c+a\right)^2}{a\left(b+c\right)+c\left(b+a\right)}\)
cho a,b ,c là độ dài 3 cạnh của một tam giác không tù và x,y,z là các số bất kì.
Cmr: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\ge\frac{2x^2+2y^2+2z^2}{a^2+b^2+c^2}\)