\(A=\dfrac{5\sqrt{x}-3}{x+\sqrt{x}+1}\\ \Leftrightarrow Ax+A\sqrt{x}+A-5\sqrt{x}+3=0\\ \Leftrightarrow Ax+\sqrt{x}\left(A-5\right)+A+3=0\)
Coi đây là PT bậc 2 ẩn \(\sqrt{x}\), PT có nghiệm
\(\Leftrightarrow\Delta=\left(A-5\right)^2-4A\left(A+3\right)\ge0\\ \Leftrightarrow A^2-10A+25-4A^2-12A\ge0\\ \Leftrightarrow-3A^2-22A+25\ge0\\ \Leftrightarrow-\dfrac{25}{3}\le A\le1\)
Dấu \("="\Leftrightarrow\) PT có nghiệm kép \(\Leftrightarrow\sqrt{x}=\dfrac{5-A}{2A}=\dfrac{5x+8}{x+\sqrt{x}+1}\cdot\dfrac{x+\sqrt{x}+1}{10\sqrt{x}-6}\\ \Leftrightarrow\sqrt{x}=\dfrac{5x+8}{10\sqrt{x}-6}\Leftrightarrow10x-6\sqrt{x}=5x+8\\ \Leftrightarrow5x-6\sqrt{x}-8=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=-\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\\ \Leftrightarrow x=4\)
Vậy \(A_{max}=1\Leftrightarrow x=4\)