1,Cho biểu thức P =\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
a, Rút gọn P
b,Tìm a để P< 7-4\(\sqrt{3}\)
2,Cho biểu thức A=\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) với a>0 và a\(\ne\)1
a, Rút gọn biểu thức A
b,So sánh giá trị của A với 1
Cho Q = \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right)\): \(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) Tìm TXĐ rồi rút gọn Q
b) Tìm a để Q dương
c) Tính giá trị của biểu thức biết a = 9 - \(4\sqrt{5}\)
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x=9
c) Tìm x để A=5
d) Tìm x để A<1
e) Tìm giá trị nguyên của x để A nhận giá trị nguyên
2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)
b) Rút gọn biểu thức A
c) So sánh giá trị biểu thức A với 1
d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)
Bài 1. Cho A=\(\left(\frac{1}{\sqrt{a}-3}+\frac{1}{\sqrt{a}+3}\right)\left(1-\frac{3}{\sqrt{a}}\right)\)
a, Rút gọn biểu thức A
b,Xác định a để biểu thức A >\(\frac{1}{2}\)
Bài 2.Cho B=\(\left(\frac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\frac{3}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}-2}\right)\) với x > 0, x \(\ne\)4
a,Rút gọn A
b,Tính A với x=6-\(2\sqrt{5}\)
rút gọn biểu thức
a) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
b) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
cho biểu thức
A= \(\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right).\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x>0; x khác 0
a) rút gọn biểu thức A
b) tính giá trị của x khi A > \(\frac{1}{6}\)
Cho biểu thức A = \(\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)
B = \(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\) với x ≠ 9, x ≥ 0
a, Rút gọn biểu thức A
b, Tìm các giá trị của x để B > A
Cho biểu thức A = \(\left(1-\frac{2\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}+a+1}\right)\)
a. Rút gọn A.
b. Tìm giá trị của biểu thức A khi: \(a=2020-2\sqrt{2019}\)
cho biểu thức A= \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a > 0
a) rút gọn biểu thức
b) tính giá trị nhỏ nhất của A.
cho biểu thức P= \(\left(\frac{a\sqrt{a}+1}{a-1}-\frac{a-1}{\sqrt{a}-1}\right):\left(\sqrt{a}-\frac{\sqrt{a}}{\sqrt{a}-1}\right)\) với a > 0; a khác 1
a) rút gọn biểu thức
b) tính giá trị của P khi a = 3-2\(\sqrt{2}\)
Cho biểu thức: \(P=\left(\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{a+\sqrt{a}}{a-1}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{1}{\sqrt{a}-1}\right)\) với a > 0, a \(\ne\)1
1. Rút gọn P
2. Tìm tất cả các giá trị nguyên của a để biểu thức P là một số nguyên