a) \(Q=\left(\dfrac{\sqrt{x}}{1-\sqrt{x}}+\dfrac{\sqrt{x}}{1+\sqrt{x}}\right)+\dfrac{3-\sqrt{x}}{x-1}\) ( \(x\ge0;x\ne1\) )
\(\Leftrightarrow Q=\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)+\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\dfrac{3-\sqrt{x}}{x-1}\)
\(\Leftrightarrow Q=\dfrac{2\sqrt{x}}{1-x}+\dfrac{3-\sqrt{x}}{x-1}\)
\(\Leftrightarrow Q=\dfrac{2\sqrt{x}}{1-x}+\dfrac{\sqrt{x}-3}{1-x}\)
\(\Leftrightarrow Q=\dfrac{2\sqrt{x}+\sqrt{x}-3}{1-x}\)
\(\Leftrightarrow Q=\dfrac{3\sqrt{x}-3}{1-x}\)
\(\Leftrightarrow Q=\dfrac{-\left(3\sqrt{x}-3\right)}{x-1}\)
\(\Leftrightarrow Q=\dfrac{-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow Q=\dfrac{-3}{\left(\sqrt{x}+1\right)}\)
b) Để Q = -1 <=> \(\dfrac{-3}{\left(\sqrt{x}+1\right)}=-1\) (ĐKXĐ: \(x\ge0\) )
\(\Rightarrow-\left(\sqrt{x}+1\right)=-3\)
\(\Leftrightarrow\sqrt{x}+1=3\)
\(\Leftrightarrow\sqrt{x}=3-1=2\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2=2^2=4\)
\(\Leftrightarrow\left|x\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhan\right)\\x=-4\left(loai\right)\end{matrix}\right.\)
Vậy x = 4 thì Q = -1