a)C=\(\dfrac{9}{\sqrt{x}+3}\)
b)\(x>36\)
a)C=\(\dfrac{9}{\sqrt{x}+3}\)
b)\(x>36\)
A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3\left(\sqrt{x}+3\right)}{x-9}\right)\)\(:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)(với \(x\ge0;x\ne9\))
a) Rút gọn A
b) Tìm x để A<\(-\)1
Giúp mk với !!!
Cho biểu thức
\(P=\left(\dfrac{2\sqrt{3}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a) Tìm ĐKXĐ của P
b) Rút gọn P
c) Tính giá trị của P khi \(x=4-2\sqrt{3}\)
d) Tìm x để P < \(-\dfrac{1}{3}\)
e) Tìm x để P có giá trị nguyên
Cho biểu thức D=\(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
a) tìm điều kiện
b) rút gọn
c) tìm x sao cho D < -1
cho biểu thức
A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
a,Tính giá trị biểu thức B khi x=36
b,Tìm x để B<\(\dfrac{1}{2}\)
c,Rút gọn A
d, Tìm giá trị x nguyên nhỏ nhất để biểu thức P=A.B nguyên
Cho biểu thức P = \(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{2-\sqrt{x}}\) (với x>0; x\(\ne\)0)
a,Rút gọn biểu thức P và tìm x để P = \(\dfrac{-3}{5}\)
b,Tìm GTNN của biểu thức A=P . \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
cho biểu thức :\(B=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right)\)
a) Rút gọn biểu thức B
b) Tính giá trị của B khi x=\(4+2\sqrt{3}\)
\(P=\left(\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\) với x ≥ 0, x ≠ 1
a, Rút gọn P
b, Tìm giá trị biểu thức biết x = \(\sqrt{3+2\sqrt{2}}\)
Cho biểu thức
C=\(\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)
a) Tìm điều kiện để C có nghĩa
b) Rút gọn C
c) Tìm x để C=4
Cho biểu thức \(P=\left(\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\); \(x\ge0,x\ne1\).
a) Rút gọn P.
b) Tìm x để \(P=\sqrt{x}\).
c) Với x > 1, hãy so sánh P và \(\sqrt{P}\).