ĐK: \(x\ge0,x\ne1\)
\(\begin{array}{l} a)Q = \left( {\dfrac{{\sqrt x }}{{1 - \sqrt x }} + \dfrac{{\sqrt x }}{{1 + \sqrt x }}} \right) + \dfrac{{3 - \sqrt x }}{{x - 1}}\\ Q = \dfrac{{\left( {1 + \sqrt x } \right)\sqrt x + \left( {1 - \sqrt x } \right)\sqrt x }}{{\left( {1 - \sqrt x } \right)\left( {1 + \sqrt x } \right)}} + \dfrac{{3 - \sqrt x }}{{x - 1}}\\ Q = \dfrac{{\sqrt x + x + \sqrt x - x}}{{1 - x}} + \dfrac{{3 - \sqrt x }}{{x - 1}}\\ Q = \dfrac{{2\sqrt x }}{{ - \left( {x - 1} \right)}} + \dfrac{{3 - \sqrt x }}{{x - 1}}\\ Q = \dfrac{{ - 2\sqrt x + 3 - \sqrt x }}{{x - 1}}\\ Q = \dfrac{{ - 3\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\\ Q = \dfrac{{ - 3}}{{\sqrt x + 1}} \end{array} \)
\(% MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGceaqabeaacaWGIb % GaaiykaiaadgfacqGH9aqpcqGHsislcaaIXaGaeyO0H49aaSaaaeaa % cqGHsislcaaIZaaabaWaaOaaaeaacaWG4baaleqaaOGaey4kaSIaaG % ymaaaacqGH9aqpcqGHsislcaaIXaaabaGaeyi1HSTaeyOeI0YaaeWa % aeaadaGcaaqaaiaadIhaaSqabaGccqGHRaWkcaaIXaaacaGLOaGaay % zkaaGaeyypa0JaeyOeI0IaaG4maaqaaiabgsDiBlabgkHiTmaakaaa % baGaamiEaaWcbeaakiabgkHiTiaaigdacqGH9aqpcqGHsislcaaIZa \begin{array}{l} b)Q = - 1 \Rightarrow \dfrac{{ - 3}}{{\sqrt x + 1}} = - 1\\ \Leftrightarrow - \left( {\sqrt x + 1} \right) = - 3\\ \Leftrightarrow - \sqrt x - 1 = - 3\\ \Leftrightarrow - \sqrt x = - 3 + 1\\ \Leftrightarrow - \sqrt x = - 2\\ \Leftrightarrow {\left( { - \sqrt x } \right)^2} = {\left( { - 2} \right)^2}\\ \Leftrightarrow x = 4 \end{array}\)
\(a.\)
\(Q=\left(\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}}{1+\sqrt{x}}\right)+\frac{3-\sqrt{x}}{x-1}\) \(ĐKXĐ:x\ge0;x\ne1\)
\(=\left(\frac{\sqrt{x}.\left(1+\sqrt{x}\right)}{1-x}+\frac{\sqrt{x}.\left(1-\sqrt{x}\right)}{1-x}\right)+\frac{\sqrt{x}-3}{1-x}\)
\(=\frac{\sqrt{x}+x+\sqrt{x}-x+\sqrt{x}-3}{1-x}\)
\(=\frac{3\sqrt{x}-3}{1-x}=-\frac{3\left(\sqrt{x}-1\right)}{x-1}=-\frac{3}{\sqrt{x}+1}\)
\(b.\)
\(Q=-1\Leftrightarrow-\frac{3}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow-\sqrt{x}-1=-3\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)
\(\text{Vậy }Q=-1\Leftrightarrow x=4\)