Đề khó dịch quá, như vậy hả bạn?
\(P=\left(\frac{x^3-8}{x-1}\right)\div\left(\frac{x^2-9x+14}{x^2-8x+7}\right)\)
\(P=\left(\frac{\left(x-2\right)\left(x^2+2x+4\right)}{x-1}\right)\div\left(\frac{\left(x-7\right)\left(x-2\right)}{\left(x-1\right)\left(x-7\right)}\right)\)
ĐKXĐ: \(x\ne1;2;7\)
\(P=\frac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x-1\right)}.\frac{\left(x-1\right)\left(x-7\right)}{\left(x-2\right)\left(x-7\right)}=x^2+2x+4\)
\(P=x^2+2x+1+3=\left(x+1\right)^2+3>0\) \(\forall x\)
Vậy P dương với mọi \(x\ne1;2;7\)