a: \(P=\dfrac{\sqrt{x}-2+5}{\sqrt{x}-2}\cdot\dfrac{x+3\sqrt{x}-x-2\sqrt{x}-4}{\sqrt{x}+3}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-4}{\sqrt{x}+3}=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)
b: Để P>1 thì P-1>0
\(\Leftrightarrow\dfrac{\sqrt{x}-4-\sqrt{x}+2}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\sqrt{x}-2< 0\)
hay 0<=x<4