`A=1/3`
`<=>3\sqrtx-3=\sqrtx`
`<=>2\sqrtx=3`
`<=>x=9/4`
`A=1/3`
`<=>3\sqrtx-3=\sqrtx`
`<=>2\sqrtx=3`
`<=>x=9/4`
Cho biểu thức A= (\(\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)):\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x-1}\right)^2}\)với x>0; x\(\ne\)1
a.Rút gọn biểu thức A
b.Tính giá trị của x để A=\(\dfrac{1}{3}\)
Cho A=\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)với x\(\ge\)0;x\(\ne\)1
a.Rút gọn A
b.Tìm x để A=-6
Cho A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)với x\(\ge\)0;x\(\ne\)1
a.Rút gọn A
b.Tính giá trị của A khi x= 4+2\(\sqrt{3}\)
Cho biểu thức:
A=\(\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{4-x}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-1\right)\)(với x>0;x\(\ne\)4)
a.Rút gọn A
b.Tìm x để A<-1
Cho biểu thức:
B=\(\left(\dfrac{1}{3-\sqrt{x}}-\dfrac{1}{3+\sqrt{x}}\right).\dfrac{3+\sqrt{x}}{\sqrt{x}}\)( với x>0;x\(\ne\)9)
Rút gọn biểu thức và tìm tất cả các giá trị nguyên của x để B>\(\dfrac{1}{2}\)
Cho biểu thức
M=\(\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right).\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)với x\(\ge\)0;x\(\ne\)4;x\(\ne\)49
a.Rút gọn M
b.Tính giá trị biểu thức của M tại x thỏa mãn \(^{x^2}\)-4x=0
c.Tìm x biết M=\(-\dfrac{\sqrt{x}}{4}\)
d.Tìm x biết M<-1
* Cho biểu thức:
A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
a. Tìm điều kiện của x để biểu thức A có nghĩa
b. Rút gọn biểu thức A
c. Tính các giá trị của x để A>0
* Cho biểu thức
A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)( với x > 0,x ≠1)
a. Rút gọn biểu thức A
b. Tính giá trị của x khi A=\(\dfrac{1}{2}\)
* Cho biểu thức
A= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x > 0, x ≠ 1
a. Rút gọn biểu thức A
b. Tính giá trị của x khi A > \(\dfrac{1}{6}\)