Cho biểu thức : \(P=1+\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
a, Tìm điều kiện xác định
b, Rút gọn P
c, Tìm giá trị của x để P = 0, P = 1
d, Tìm các giá trị của x để P > 0.
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
cho \(B=\left(\frac{4x}{x+2}+\frac{8x^2}{4-x^2}\right):\left(\frac{x-1}{x^2-2x}-\frac{2}{x}\right)\)
rút gọn
a)tìm x để b=-1
b)tìm x để A<0
Câu 1: Giải các bất phương trình
1) \(4x^2-4x+1>9\)
2) \(\frac{x^2-3x+2}{3x^2+5x-8}< 0\)
Câu 2 : Tìm x để biểu thức sau có giá trị âm
\(A=\left(\frac{1-x}{x+3}-\frac{x+3}{x-1}\right):\left(\frac{x+3}{x-1}-\frac{x-1}{x+3}\right)\)
1. a, tính gt nhỏ nhất của biểu thức
A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b, tính gt lớn nhất của biểu thúc
B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
2. cho bt Q=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
Câu 2: Giải phương trình:
a,\(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
b) 2x3 – 5x2 + 3x = 0
c) \(\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
Tìm GTNN của các biểu thức sau
A=4x^2+4xy+17y^2-8y+1
B=\(\frac{x^2-2}{x^2+2}\)
C=\(\frac{5x^2-10+3}{\left(x-1\right)^2}\)
D=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
tìm GTNN của các biểu thức sau
A=4x^2=4xy+17y^2-8y+1
B=\(\frac{x^2-2}{x^2+2}\)
C=\(\frac{5x^2-10+3}{\left(x-1\right)^2}\)
D=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
Tìm GTLN của biểu thức sau
C=\(\frac{x^2+5x+7}{x^2+4x+4}\)
D=\(\frac{x^2-2x+2020}{x^2}\)
Cho biểu thức
A= \(\left[\frac{3}{2}\left(x^4-\frac{x^4+1}{x^2+1}\right).\frac{x^3-x\left(4x-1\right)-4}{x^7+6x^6-x-6}\right]:\frac{x^2+29x+78}{3x^2+12x-36}\)
a) Rút gọn A
b) Tìm x nguyên để A có giá trị nguyên