a) ĐKXĐ: x∉{3;-3}
Ta có: \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right):\left(\frac{x+3}{x+3}-\frac{1}{x+3}\right)\)
\(=\frac{21+x^2-x-12-\left(x^2-4x+3\right)}{\left(x-3\right)\left(x+3\right)}:\frac{x+2}{x+3}\)
\(=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+2}\)
\(=\frac{3\left(x+2\right)}{x-3}\cdot\frac{1}{x+2}=\frac{3}{x-3}\)
b) Ta có: |2x+1|=5
⇔\(\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Do x=-3 không thỏa mãn ĐKXĐ nên ta chỉ tính giá trị của B tại x=2
Thay x=2 vào biểu thức \(B=\frac{3}{x-3}\), ta được:
\(\frac{3}{2-3}=\frac{3}{-1}=-3\)
Vậy: -3 là giá trị của biểu thức \(B=\frac{3}{x-3}\) tại x=2
c) Ta có: \(B=\frac{-3}{5}\)
⇔\(\frac{3}{x-3}=\frac{-3}{5}\)
\(\Leftrightarrow x-3=\frac{5\cdot3}{-3}=\frac{15}{-3}=-5\)
hay x=-2(tm)
Vậy: Khi \(B=\frac{-3}{5}\) thì x=-2
d) Để B<0 thì \(\frac{3}{x-3}< 0\)
mà 3>0
nên x-3<0
hay x<3
Vậy: Khi x<3 và x≠-3 thì B<0