a, \(B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)
\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
b,Ta có \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{2}+1\)
Vậy \(B=\sqrt{2}+1-1=\sqrt{2}\)
a) Ta có: \(B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)
\(=\sqrt{x}-1\)
b) Thay \(x=3+2\sqrt{2}\) vào B, ta được:
\(B=\sqrt{2}+1-1=\sqrt{2}\)