\(a,A=\left(x-2\right)\left(x+2\right)-\left(x-1\right)^2\)
\(=\left(x^2-4\right)-\left(x^2-2x+1\right)\)
\(=x^2-4-x^2+2x-1\)
\(=2x-5\)
\(a,A=\left(x-2\right)\left(x+2\right)-\left(x-1\right)^2\)
\(=\left(x^2-4\right)-\left(x^2-2x+1\right)\)
\(=x^2-4-x^2+2x-1\)
\(=2x-5\)
cho biểu thức : \(A=\dfrac{x}{x+2}-\dfrac{2x}{x-2}+\dfrac{x^2+12}{x^2-4}\)(với x ≠ 2 và x ≠ - 2 )
a, rút gọn biểu thức A
b, Tìm giá trị nguyên của x để A có giá trị nguyên
Cho biểu thức A= \(\left(\dfrac{x^2-16}{x-4}-1\right):\left(\dfrac{x-2}{x-3}+\dfrac{x+3}{x+1}+\dfrac{x+2-x^2}{x^2-2x-3}\right)\)
1, Rút gọn biểu thức A.
2, Tìm số nguyên x để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên.
Bài 2. Cho biểu thức: M = (2x + 3)(2x - 3) – 2(x + 5)2 – 2(x - 1)(x + 2)
a) Rút gọn M.
b) Tính giá trị của M tại x =
c) Tìm x để M = 0.
Bài tập 2: Cho biết a + b = 6, a – b =4, a.b = 5. Không cần tìm ra a, b hãy tính các giá trị của các biểu thức sau:
a) A= x2+y2
b) B= x3+y3+xy
c) C= x2-y2
d) D= \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)
e) E= \(\dfrac{x}{y}\)+\(\dfrac{y}{x}\)
Bài 1: Tính giá trị của biểu thữ A với x = 999
A = x6 - x5 ( x - 1) - x4 ( x + 1) + x3 ( x - 1) + x2 ( x + 1) - x ( x + 1) +1
Bài 2: Rút gọn và tính giá trị của biểu thức.
a. 3x ( x - 4y ) - \(\dfrac{12}{5}\)y ( y - 5x ) ; Tại x = 4, y = - 5
b. 2u ( 1 + u - v ) - v ( 1 - 2u + v ) ; Tại u = -\(\dfrac{1}{3}\) , v = \(\dfrac{-2}{3}\)
Cho biểu thức A= ( x - 2) ( x + 2) - ( x - 1)3 - x2 ( 4 - x )
a, Rút gọn biểu thức A
b, Tìm giá trị của x để biểu thức A có giá trị bằng 0
Bài 1: a) Tính 3x. (x-1)
b) Phân tích các đa thức sau thành nhân tử x3 - 2x2 + x
c) Tính giá trị biểu thức x2 - 2xy - 9z2 + y2 . Tại x = 6; y = -4; z = 30
* Dạng toán về phép chia đa thức
Bài 9.Làm phép chia:
a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1)
Bài 10: Làm tính chia
1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5)
Bài 11:
1. Tìm n để đa thức x4–x3 + 6x2–x + n chia hết cho đa thức x2–x + 5
2. Tìm n để đa thức 3x3+ 10x2–5 + n chia hết cho đa thức 3x + 1
3*. Tìm tất cả các số nguyên n để 2n2+ n –7 chia hết cho n –2.
Bài 12: Tìm giá trị nhỏ nhất của biểu thức
1. A = x2–6x + 11 2. B = x2–20x + 101 3. C = x2–4xy + 5y2+ 10x –22y + 28
Bài 13: Tìm giá trị lớn nhất của biểu thức
1. A = 4x –x2+ 3 2. B = –x2+ 6x –11
Bài 14: CMR
1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên
2. a(2a –3) –2a(a + 1) chia hết cho 5 với a là số nguyên
3. x2+ 2x + 2 > 0 với mọi x 4. x2–x + 1 > 0 với mọi x 5. –x2+ 4x –5 < 0 với mọi x
Chương II
* Dạng toán rút gọn phân thức
Bài 1.Rút gọn phân thức:a. 3x(1 - x)/2(x-1) b.6x^2y^2/8xy^5 c3(x-y)(x-z)^2/6(x-y)(x-z)
Bài 2: Rút gọn các phân thức sau:a)x^2-16/4x-x^2(x khác 0,x khác 4) b)x^2+4x+3/2x+6(x khác -3) c) 15x(x+y)^3/5y(x+y)^2(y+(x+y) khác 0). d)5(x-y)-3(y-x)/10(10(x-y)(x khác y) 2x+2y+5x+5y/2x+2y-5x-5y(x khác -y) f)15x(x+y)^3/5y(x+y)^2(x khác y,y khác 0)
Bài 3: Rút gọn, rồi tính giá trị các phân thức sau:
a) A=(2x^2+2x)(x-2)^2/(x^3-4x)(x+1) với x=1/2 b)B=x^3-x^2y+xy2/x^3+y^3 với x=-5,y=10
Bài 4;Rút gọn các phân thức sau:
a) (a+b)^/a+b+c b) a^2+b^2-c^2+2ab/a^2-b^2+c^2+2ac c) 2x^3-7x^2-12x+45/3x^3-19x^2+33x-9
Bài 1: Cho biểu thức A= \(\dfrac{3}{2x+6}\) - \(\dfrac{x-6}{2x^2+6x}\)
a) Rút gọn biểu thức A
b) Tính giá trị của biểu thức A tại x=\(\dfrac{1}{2}\)
Bài 2: Cho biểu thức A= \(\dfrac{5x+2}{3x^2+2x}\) + \(\dfrac{-2}{3x+2}\) với x ≠ 0 và x ≠ \(\dfrac{-2}{3}\)
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A tại x=\(\dfrac{1}{3}\).
Cho biểu thức: B = A = (6x + 1)2 + (3x - 1)2 - 2(3x - 1)(6x + 1)
a) Rút gọn biểu thức
b) Tính giá trị của biểu thức tại x = 1/2