a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x-36\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne36\end{matrix}\right.\)
b) Ta có: \(A=\left(\frac{\sqrt{x}}{x-36}-\frac{\sqrt{x}-6}{x+6\sqrt{x}}\right):\frac{2\sqrt{x}-6}{x+6\sqrt{x}}+\frac{\sqrt{x}}{6-\sqrt{x}}\)
\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}+6\right)\left(\sqrt{x}-6\right)}-\frac{\left(\sqrt{x}-6\right)^2}{\sqrt{x}\left(\sqrt{x}+6\right)\left(\sqrt{x}-6\right)}\right)\cdot\frac{\sqrt{x}\left(\sqrt{x}+6\right)}{2\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}}{6-\sqrt{x}}\)
\(=\frac{12\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}+6\right)\left(\sqrt{x}-6\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}+6\right)}{2\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}}{\sqrt{x}-6}\)
\(=\frac{6}{\sqrt{x}-6}-\frac{\sqrt{x}}{\sqrt{x}-6}=\frac{6-\sqrt{x}}{-\left(6-\sqrt{x}\right)}=\frac{1}{-1}=-1\)
Vậy: Biểu thức \(A=\left(\frac{\sqrt{x}}{x-36}-\frac{\sqrt{x}-6}{x+6\sqrt{x}}\right):\frac{2\sqrt{x}-6}{x+6\sqrt{x}}+\frac{\sqrt{x}}{6-\sqrt{x}}\) không phụ thuộc vào x, với \(\left\{{}\begin{matrix}x\ge0\\x\ne36\end{matrix}\right.\)