Cho biểu thức
A= \(\left(\dfrac{\sqrt{a}-1}{3\sqrt{a}-1}-\dfrac{1}{1+3\sqrt{a}}+\dfrac{8\sqrt{a}}{9a-1}\right):\left(1-\dfrac{3\sqrt{a}-2}{3\sqrt{a}+1}\right)\)
a) Rút gọn A
b) Tìm giá trị của a để A= \(\dfrac{6}{5}\)
Cho biểu thức
\(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)
với x > 0 và x ≠ 9
a. Rút gọn A
b. Tìm x để A > 1/2
Cho biểu thức H = \(\left(\dfrac{a-3\sqrt{a}}{a-2\sqrt{a}-3}-\dfrac{2a}{a-1}\right)\): \(\dfrac{1-\sqrt{a}}{a-2\sqrt{a}+1}\) với a \(\ge\) 0, a \(\ne\) 1, a \(\ne\) 9
a) Rút gọn biểu thức H
b) Tìm a khi H = 2023
Rút gọn các biểu thức:
\(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{x-4}{3\sqrt{x}}\)
\(B=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{1}{\sqrt{a}+2}+\dfrac{6-7\sqrt{a}}{a-4}\right).\left(\sqrt{a}+2\right)\)
\(A=\left(\dfrac{2a+1}{\sqrt{a^3}-1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\dfrac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\)(đk a lớn hơn bằng 0,a khác 1)
a, rút gọn a
b,tìm a để A=6
Cho biểu thức:
\(\\ A=\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{2-\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn A
b) Tìm x để \(\dfrac{1}{A}\le\dfrac{1}{5}\)
1. Rút gon biểu thức chứa căn
\(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
2. Cho biểu thức \(P=\left(1+\dfrac{1}{\sqrt{x-1}}\right).\dfrac{1}{x-\sqrt{x}}\)
a) Tìm ĐKXĐ và rút gọn P
b) Tìm x để \(P.\sqrt{5+2\sqrt{6}}.\left(\sqrt{x}-1\right)^2=x-2005+\sqrt{2}+\sqrt{3}\)
3. Cho biểu thức \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(1+\dfrac{1}{\sqrt{x}}\right)\)
a) Tìm ĐKXĐ và rút gọn A
b) Tìm giá trị của x để \(\sqrt{A}>A\)
1/ Cho biểu thức:
\(Q=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right).\left(\dfrac{x+x\sqrt{x}}{\sqrt{x}-1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-x}\right)\)với x>0, x\(\ne\)1
a) rút gọn Q
b) Tìm các giá trị của x để Q= -1
2/ Thu gọn biểu thức sau:
a) \(A=\dfrac{5+\sqrt{5}}{\sqrt{5}+2}+\dfrac{\sqrt{5}}{\sqrt{5}-1}-\dfrac{3\sqrt{5}}{3+\sqrt{5}}\)
b) \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)( x >0)
Giúp mk với
Rút gọn:
A = \(\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
B = \(\dfrac{3\sqrt{2}+\sqrt{11}}{\sqrt{2}+\sqrt{6+\sqrt{11}}}+\dfrac{3\sqrt{2}-\sqrt{11}}{\sqrt{2}-\sqrt{6-\sqrt{11}}}+18\)
C = \(\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{2n+1}+\sqrt{2n+3}}\)với n thuộc N*
D = \(\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\left(\sqrt{15}-1\right)\left(7-2\sqrt{3}+\sqrt{5}\right)\)
E=\(\dfrac{\left(4+\sqrt{3}\right)}{\sqrt[]{1}+\sqrt{3}}+\dfrac{\left(8+\sqrt{15}\right)}{\sqrt{3}+\sqrt{5}}+...+\dfrac{2k+\sqrt{k^2-1}}{\sqrt{k-1}+\sqrt{k+1}}+...+\dfrac{240+\sqrt{14399}}{\sqrt{119}+\sqrt{121}}\)
F = \(\left(\dfrac{2a+1}{a\sqrt{a}-1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\) với a >= 0 và a khác 1