a) Ta có: \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
Điều kiện đúng A -1
Rút gọn đúng cho.
b) Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1\)= \(a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left(a^2+a+1-\left(a^2+a-1\right)\right)\):d
Nên d = 1 tức là \(a^2+a+1\)và\(a^2+a-1\)là nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
a)A=\(\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}\)=\(\frac{a^2+a-1}{a^2+a+1}\)
b)A=\(\frac{a^2+a-1}{a^2+a+1}=1-\frac{2}{a^2+a+1}\)
muốn A nguyên thì \(\left(a^2+a+1\right)\in U\left(2\right)\)=(-1,1,2,-2)
xét từng TH ta thấy không có giá trị a nguyên nào thỏa mãn để A nguyên => A là phân số tối giản khi a nguyên