\(A=\dfrac{x+8+\sqrt{x}+2}{x\sqrt{x}+8}+\dfrac{2-\sqrt{x}}{x-4}\)
\(=\dfrac{x+\sqrt{x}+10}{x\sqrt{x}+8}-\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+10-x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}=\dfrac{3\sqrt{x}+6}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\)
\(=\dfrac{3}{x-2\sqrt{x}+4}\)
Để A là số nguyên thì \(x-2\sqrt{x}+4\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x-2\sqrt{x}+1=0\)
=>x=1