gợi ý :Đề cho \(x^2-x-1\ne0\), mà mẫu cũng khác 0
nên mẫu có hạng tử \(x^2-x-1\) chia \(x^4-x^2-2x-1/x^2-x-1\)
gợi ý :Đề cho \(x^2-x-1\ne0\), mà mẫu cũng khác 0
nên mẫu có hạng tử \(x^2-x-1\) chia \(x^4-x^2-2x-1/x^2-x-1\)
Cho biểu thức:
B = (\(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\)) : (\(1-\dfrac{x-3}{x+1}\))
a) Tìm điều kiện của x để giá trị của biểu thức được xác định
b) Tính giá trị của biểu thức B với x = 2005
1.Cho biểu thức: \(A=\left(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\right):\dfrac{2-4x}{x+1}-\dfrac{3x+1-x^2}{3x}\)
a.Rút gọn A
b.Tính A tại x=6022
c. Tìm x để A<0
d. Tìm giá trị nguyên của x để A nguyên
2.Phân tích đa thức thành nhân tử: \(x^4+2007x^2+2006x+2007\)
cho biểu thức A:\(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}-\dfrac{8}{4-x^2}\)
a, Tìm các giá trị của x có nghĩa
b, Rút gọn A
c, tính giá trị của A khi\(\left|x-3\right|\) =1
Tìm giá trị của x để các phân thức sao bằng 0 :
a) \(\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)
b) \(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}\)
a. Cho x,y,z là 3 số khác 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính giá trị biểu thức A=\(\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\)
b. Cho a,b,c là các số hữu tỉ khác nhau từng đôi một. Chứng minh rằng A=\(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\)
là bình phương của 1 số hữu tỉ
c. Tìm giá trị lớn nhất của biểu thức B=\(\dfrac{5x^2+4x-1}{x^2}\)
Cho D=\(\dfrac{2x+4}{3x-1}\) (x ≠ \(\dfrac{1}{3}\)).Tìm x nguyên để D có giá trị nguyên.
mn giúp mik vs ạ!!!
cho biểu thức Q=\(\dfrac{x^2}{xy+y^2}+\dfrac{y^2}{xy-x^2}+\dfrac{x^2+y^2}{xy}\)với \(x\ne0\);\(x\ne\pm y\)
a, rút gọn Q
b, biết Q có giá trị bằng 2012, tính \(\dfrac{x}{y}\)
c, tính giá trị của biểu thức Q biết x,y là số nguyên dương thỏa mãn y=\(\dfrac{x^2+x+4}{x+1}\)
cho P = \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\) với x khác + - \(\dfrac{1}{2}\)
a/ rút gọn A
b/ tính giác trị biểu thức khi |x| = 2
a) Xác định a, b, c, d để: \(\dfrac{x^3+2x}{x^4-1}=\dfrac{a}{x+1}+\dfrac{b}{x-1}+\dfrac{cx+d}{x^2+1}\)
b) Rút gọn: \(A=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-a^2-c^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
Với a + b + c = 0.