Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Hiển

cho biểu thức A=\(\dfrac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

a) Rút gọn biểu thức

b) Chững minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.

Hoang Hung Quan
7 tháng 3 2017 lúc 7:43

a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(\Rightarrow A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)

\(\Rightarrow A=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+a\left(a+1\right)}\)

\(\Rightarrow A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(\Rightarrow A=\frac{a^2+a-1}{a^2+a+1}\)

Vậy biểu thức \(A\) khi được rút gọn là \(\frac{a^2+a-1}{a^2+a+1}\)

b) Gọi \(ƯCLN\left(a^2+a-1;a^2+a+1\right)=d\)

\(\Rightarrow\left\{\begin{matrix}a^2+a-1⋮d\\a^2+a+1⋮d\end{matrix}\right.\)\(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)=2⋮d\)

\(\Rightarrow d=\left\{\pm1;\pm2\right\}\left(1\right)\)

Lại có:

Nếu \(a\) là số lẻ thì:

\(\left\{\begin{matrix}a^2+a+1\\a^2+a-1\end{matrix}\right.\) là số lẻ

Nếu \(a\) là số chẵn thì:

\(\left\{\begin{matrix}a^2+a+1\\a^2+a-1\end{matrix}\right.\) là số lẻ

\(\Rightarrow\left\{\begin{matrix}a^2+a+1\\a^2+a-1\end{matrix}\right.\) là số lẻ \(\forall a\) hay hai số này không có ước chẵn \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow d=\left\{\pm1\right\}\)

Vậy nếu \(a\) là số nguyên thì giá trị của biểu thức tìm được của câu \(a\), là một phân số tối giản (Đpcm)


Các câu hỏi tương tự
haanh1610
Xem chi tiết
Nguyễn Quỳnh Trang
Xem chi tiết
Khiết Băng
Xem chi tiết
Bée Dâu
Xem chi tiết
Phạm Khánh Vân
Xem chi tiết
Nguyễn Ngọc Minh Châu
Xem chi tiết
Nguyễn Nhật Mỹ Lệ
Xem chi tiết
Phan Công Bằng
Xem chi tiết
Minh Pham
Xem chi tiết