a,+b, \(A=\dfrac{4}{x+2}+\dfrac{3}{x-2}-\dfrac{5x-6}{x^2-4}\left(x\ne\pm2\right)\)
\(=\dfrac{4\left(x-2\right)+3\left(x+2\right)-5x+6}{x^2-4}\)
=\(\dfrac{4x-8+3x+6-5x+6}{x^2-4}\)
= \(\dfrac{2x+4}{x^2-4}\)
= \(\dfrac{2}{x-2}\)
c, Thay \(x=-4\) vào A ta được :
\(A=\dfrac{2}{-4-2}=\dfrac{-1}{3}\)
d, Để A có giá trị là số nguyên thì
\(\Leftrightarrow2⋮x-2\)
\(\Leftrightarrow x-2\in U\left(2\right)=\left\{\pm2,\pm1\right\}\)
\(\Rightarrow x-2=2\Rightarrow x=4\)
\(x-2=-2\Rightarrow x=0\)
\(x-2=1\Rightarrow x=3\)
\(x-2=-1\Rightarrow x=1\)
Vậy \(S=\left\{4;0;3;1\right\}\)