cho 2 số dương x,y thay đổi thỏa mãn điều kiện x+y≥4. Tìm GTNN của biểu thức:
A=\(\frac{3x^2+4}{4x}+\frac{2+y^2}{y^2}\)
Cho 3 số thực không âm thỏa mãn điều kiện \(x^2+y^2+z^2=2\). Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{x^2}{x^2+yz+x+1}+\frac{y+z}{x+y+z+1}-\frac{1+yz}{9}\)
Tìm x để biểu thức sau là số nguyên
\(A=\frac{x^2-1}{x+1}\)
1. Giải bft ( lập bảng xét dấu nếu cần )
\(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}>3\)
2. Chứng minh: \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\) ; với a,b,c > 0
3. Cho x,y,z > 0 thỏa mãn x+y+z = 1. Tìm GTLN của biểu thức: P = \(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
B1 xét dấu các biểu thức
a f(x)=(1-2x) (2x2-5x+3)
b g(x)=\(\frac{-6x^3-19x^2-11x+6}{x^2-4x+3}\)
B2 giải bất phương trình
\(\frac{2-x}{x^3+x^2}>\frac{1-2x}{x^3-3x^2}\)
B3 Tìm tập xác định của hàm số y=\(\sqrt{\frac{1}{x^2+7x+6}-\frac{1}{x^2-2x+5}}\)
Tìm GTNN của biểu thức \(A=\frac{8\sqrt{x}-2}{2x+1}+\frac{18\sqrt{x}-6}{3x+1}\)
tìm điều kiện xác định rồi suy ra tập nghiệm của mỗi bất phương trình sau , giải thích : a) \(\sqrt{x}\) > \(\sqrt{-x}\) ; c) x + \(\frac{1}{x-3}\) >= 2 + \(\frac{1}{x-3}\) ; d) \(\frac{x}{\sqrt{x-2}}\) < \(\frac{2}{\sqrt{x-2}}\)
Xét các số thực dương x,y,z thõa mãn điều kiện xyz=1 Tìm GTLN của biểu thức :
\(P=\frac{1}{x^3\left(y^3+z^3\right)+1}+\frac{1}{y^3\left(z^3+x^3\right)+1}+\frac{1}{z^3\left(x^3+y^3\right)+1}\)
1) Cho P = \(\frac{x}{1+x^2}\) + \(\frac{y}{1+y^2}\) + \(\frac{z}{1+z^2}\). Khẳng định nào đúng :
A. P >= 3/2 B. P >= 3 C. P<=1 D. P<=3/2 (Giải cụ thể ln nka)
2) Tìm GTNN của :
a) \(\frac{1}{x}\) + \(\frac{4}{y}\) với x + y = 5 (x, y ko âm)
b) \(x\sqrt{1-x^2}\)
3) Cho y = \(x^2+\left(2m+1\right)x+m^2-1\). Tìm m để biểu thức đạt GTNN = 1 trên khoảng [0;1]
4) Cho A(1;-2), B(2;3). Tìm tung độ điểm C để chu vi tam giác ABC nhỏ nhất