a)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x-3\ne0\\x^2-3x\ne0\\2x-2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne3\\x\left(x-3\right)\ne0\\2\left(x-1\right)\ne0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x\ne0\\x\ne3\\x\ne1\end{matrix}\right.\)\(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\\ A=\dfrac{\left(x-3\right)^2-x^2+9}{x^2-3x}\cdot\dfrac{x}{2x-2}\\ A=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\\ A=\dfrac{18-6x}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\\ A=-\dfrac{6\left(x-3\right)}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\\ A=-\dfrac{6\cdot x}{x\cdot2\left(x-1\right)}\\ A=\dfrac{3}{x-1}\)
b)
Để \(A=2\) thì \(\dfrac{3}{x-1}=2\), suy ra: \(x-1=\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\)
Vậy với \(x=\dfrac{5}{2}\) thì \(A=2\).
c)
Để \(A\) có giá trị nguyên thì \(\dfrac{3}{x-1}\) phải có giá trị nguyên.
Suy ra: \(x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\).
Suy ra: \(x\in\left\{-2;0;2;4\right\}\).
Kết hợp với ĐKXĐ ta có \(x\in\left\{-2;0;2;4\right\}\).
Vậy với \(x\in\left\{-2;0;2;4\right\}\) thì \(A\) có giá trị nguyên.