Lời giải:
Với \(x=\sqrt{2}\) là nghiệm. Đặt
Đặt \(x^3+ax^2+bx+c=(x+\sqrt{2})(x+m)(x+n)\)
Thực hiện khai triển:
\(\Leftrightarrow x^3+ax^2+bx+c=x^3+x^2(m+n+\sqrt{2})+x(mn+\sqrt{2}m+\sqrt{2}n)+\sqrt{2}mn\)
Đồng nhất hệ số:
\(\Rightarrow \left\{\begin{matrix} m+n+\sqrt{2}=a\\ mn+\sqrt{2}(m+n)=b\\ \sqrt{2}mn=c\end{matrix}\right.(*)\)
\(\Rightarrow \frac{c}{\sqrt{2}}+\sqrt{2}.a=b+2\)
\(\Rightarrow \sqrt{2}(b+2)=c+2a\in\mathbb{Q}\)
Mà \(b+2\in\mathbb{Q}; \sqrt{2}\not\in\mathbb{Q}\) nên điều trên xảy ra khi \(b+2=0\Leftrightarrow b=-2\)
Do đó: \(mn+\sqrt{2}(m+n)=-2\)
\(\Leftrightarrow (m+\sqrt{2})(n+\sqrt{2})=0\Rightarrow \left[\begin{matrix} m=-\sqrt{2}\\ n=-\sqrt{2}\end{matrix}\right.\)
Không mất tq, giả sử \(m=-\sqrt{2}\Rightarrow n=a\) (theo $(*)$)
Vậy 3 nghiệm của pt là: \((\sqrt{2}; -\sqrt{2}; a)\)