xác định hàm số bậc 2 có đồ thị là parabol (p) biết : a, (P) : y= ax^2 + bx + c có giá trị nhỏ nhất = -1 biết (p) đi qua điểm A( -1 ; 7) và (P) cắt Oy tại điểm có tung độ bằng 1
tìm phương trình (P) : ax2 + bx + c ( a khác 0 ) . Biết (P) có đỉnh I ( 2 , -1 ) và (P) cắt Oy tại đỉnh có tung độ bằng 3.
Xác định parabol y = ax^2 + 6x - c biết parabol có trục đối xứng x =- 4 và cắt Ox tại 2 điểm phân biệt có độ dài bằng 4
lập phương trình của (P) : ax2 + bx + c (a khác 0 ) , biết : a) (P) có đỉnh I (1 , 2) và qua M ( -1 , -2 ) ; b) (P) có trục đối xứng x = 2 và đi qua A (1 , -6) , B(4 , 3)
cho (P) : y = ax2 + bx + 2 . Tìm a và b biết (P) có trục đối xứng x = \(\frac{5}{6}\) và (P) đi qua M ( 2;4 )
Tìm tập hợp các gtri của m để đt y=-1 cắt đồ thị hàm số : \(y=x^4-\left(3m+2\right)x^2+3m\) tại 4 điểm pb có hoành độ nhỏ hơn 2
Xác định parabol \(y=ax^2+bx+c\) biết rằng (P)
Đi qua A(1;-4) và tiếp xúc với trục hoành tại x=3
Tìm m để parabol (P): y = x2 - (m+4)x + m cắt trục hoành tại 2 điểm A, B sao cho độ dài đoạn AB ngắn nhất
a, xác định parabol y = ax^2 + bx + c đạt cực tiểu bằng 4 tại x = -2 và đồ thị đi qua A ( 0 ; 6)
b, xác định GTNN của hàm số y = x^2 - 4x + 1