a) ĐK: \(x\ge0;x\ne4\)
Rút gọn:
\(\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{4\sqrt{x}}{4-x}\\ =\frac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}+4\sqrt{x}}{4-x}\\ =\frac{4-2\sqrt{x}+2+\sqrt{x}+4\sqrt{x}}{4-x}=\frac{6+3\sqrt{x}}{4-x}\\ =\frac{3\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}=\frac{3}{2-\sqrt{x}}\)
b)
Để
\(A=-\frac{3}{7}\\ \Leftrightarrow\frac{3}{2-\sqrt{x}}=-\frac{3}{7}\\ \Leftrightarrow2-\sqrt{x}=-7\\ \Leftrightarrow9=\sqrt{x}\\ \Leftrightarrow x=81\)