Cho a,b,c>0 chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) (1). Áp dụng chứng minh các BĐT sau:
a) \(\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
b) Cho x,y,z>0 tm x+y+z=1. Tìm GTLN của bt \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
cho x,y,z tm \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\)
CMR xyz=\(\frac{1}{8}\)
Áp dụng bđt Cô-si để tìm GTNN của các bđt sau:
a) \(y=\frac{x}{2}+\frac{18}{x}\) với x>0
b) \(y=\frac{x}{2}+\frac{2}{x-1}\) với x>1
c)\(y=\frac{3x}{2}+\frac{1}{x+1}\) với x>-1
d) \(y=\frac{x}{3}+\frac{5}{2x-1}\) với \(x>\frac{1}{2}\)
e) \(y=\frac{1}{1-x}+\frac{5}{x}\) với 0<x<1
f) \(y=\frac{x^3+1}{x^2}\) với x>0
g) \(y=\frac{x^2+4x+4}{x}\) với x>0
h) \(y=x^2+\frac{2}{x^3}\) với x>0
Sử dụng phương pháp chứng minh
phản chứng để chứng minh các bài toán sau:
a) Chứng minh rằng có ít nhất một trong 3
phương trình :ax2 + bx + c = 0, bx2 + cx +
a = 0, cx2 + ax + b = 0 vô nghiệm.
b) Cho 0 < a, b, c < 1. Chứng minh có ít
nhất 1 trong các bất đẳng thức sau sai:
a(1 − b) >\(\frac{1}{4}\)
, b(1 − c) >\(\frac{1}{4}\)
, c(1 − a) >\(\frac{1}{4}\)
.
c) Cho các số thực x, y, z thỏa x.y.z > 0, x +
y + z > 0, xy + xz + yz > 0. Chứng minh
x, y, z là các số dương.
Tính giá trị các biểu thức sau:
a) A = 5x3y2 tại x = -1 và y = -1
b) B = 5xy4 tại x = -3 và y = -1
c) C = \(\frac{4}{5}\)xy3 tại x = 5 và y = -2
d) D = \(\frac{3}{4}\)x2y3 tại x = 2 và y = \(\frac{1}{3}\)
e) E = \(\frac{2}{5}\)x2y tại x = \(\frac{1}{2}\) và y = 5
HELP ME T^T
Áp dụng bđt cô si để tìm GTLN của các bt sau:
a) \(y=\left(x+3\right)\left(5-x\right)\) với -3≤x≤5
b) \(y=x\left(6-x\right)\) với 0≤x≤6
c) \(y=\left(x+3\right)\left(5-2x\right)\) với -3≤x≤\(\frac{5}{2}\)
d) y=(2x+5)(5-x) với \(\frac{-5}{2}\le x\le5\)
e) y=(6x+3)(5-2x) với \(\frac{-1}{2}\le x\le\frac{5}{2}\)
f) \(y=\frac{x}{x^2+2}\) với x>0
g) \(y=\frac{x^2}{\left(x^2+3\right)^3}\)
Cho \(\left\{{}\begin{matrix}x,y,z\ge0\\x+y+z=1\end{matrix}\right.\) Chứng minh \(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
Bài 1 : Tìm x biết
a) \(13\frac{1}{3}\div1\frac{1}{3}=26\div\left(2x-1\right)\)
b) \(0,2:1\frac{1}{5}=\frac{2}{3}\div\left(6x+7\right)\)
c) \(\frac{37-x}{x+13}=\frac{3}{7}\)
d) \(\frac{x-1}{x+5}=\frac{6}{7}\)
e) \(2\frac{2}{\frac{3}{0,002}=}\frac{1\frac{1}{9}}{x}\)
Bài 2 : Tìm x,y,z biết:
a) \(\frac{x}{7}=\frac{4}{13}\)và x + y = 40
b) 3x = 2y , 7y = 57 và x - y + z = 32
c) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{7-4}{4}\)và 2x + 3y - z = 50
Bài 3 .
a) 6,88 : x =12:27
b) \(8\frac{1}{3}\div11\frac{2}{3}=13:\left(2x\right)\)
Giải giúp mk
Mk đng cần gấp
Cho 3 số x,y,z khác 0 thỏa mãn \(x^2+y^2+z^2=xy+yz+zx\)
Tính giá trị biểu thức A=(2015-\(\frac{2014x}{y}\))(\(\left(2014-\frac{2013y}{z}\right)\left(2013-\frac{2012z}{x}\right)\)