Áp dụng BĐT
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\Rightarrow a^2+b^2+c^2\ge\dfrac{3^2}{3}=3\)
Theo BĐT Bunhiacốpxki ta có:
\(1.\sqrt{a^2+3}+1.\sqrt{b^2+3}+1.\sqrt{c^2+3}\ge\sqrt{\left(1+1+1\right)\left(a^2+b^2+c^2+9\right)}\ge\sqrt{3.\left(3+9\right)}=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(VT=\sqrt{a^2+b^2+c^2+9+2\Sigma_{cyc}\sqrt{\left(a^2+1+1+1\right)\left(1+b^2+1+1\right)}}\)
\(\ge\sqrt{\frac{\left(a+b+c\right)^2}{3}+9+2\Sigma_{cyc}\left(a+b+1+1\right)}\)
\(=\sqrt{3+9+2\Sigma_{cyc}\left(2\left(a+b+c\right)+6\right)}=\sqrt{36}=6\)
Is that true?