Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Mỹ vân

 Cho ba số thực dương a, b, c . Chứng minh rằng: 

\(\dfrac{a^2+bc}{b+c}+\dfrac{b^2+ca}{c+a}+\dfrac{c^2+ab}{a++b}\ge a+b+c\)

Nguyễn Việt Lâm
28 tháng 8 2021 lúc 22:34

\(\dfrac{a^2+bc}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)-a\left(b+c\right)}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}-a\)

\(\Rightarrow VT=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}-\left(a+b+c\right)\)

Mặt khác áp dụng \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Rightarrow\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge a+b+b+c+a+c=2\left(a+b+c\right)\)

\(\Rightarrow VT\ge2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c\) (đpcm)


Các câu hỏi tương tự
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Mai Thị Thanh
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Lê Thu Hiền
Xem chi tiết