ba số a,b,c,khác 0 và a+b+c\(\ne\)0,thỏa mãn điều kiện \(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)
tính giá trị của biểu thức \(P=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)
Cho 3 số hữu tỉ dương a;b;c thỏa mãn: \(\dfrac{a+b-2c}{c}=\dfrac{b+c-2a}{a}=\dfrac{c+a-2b}{b}\)
Tính giá trị biểu thức: P = \(\left(1+\dfrac{a}{b}\right)\left(2+\dfrac{b^2}{c^2}\right)\left(3+\dfrac{c^3}{a^3}\right)\)
Cho các số thực a,b,c,d,e thỏa mãn \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)chứng minh rằng: \(\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)=\dfrac{a^2}{b.c}\)
Cho hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) thỏa mãn b, d > 0 và \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Cho a,b,c là ba số thực \(\left(a,b,c\ne0\right)\)thỏa mãn điều kiện \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Tính \(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
Câu 1 .Cho A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}.\) Tính số nguyên x để A có giá trị là một số nguyên.
Câu 2.Ba số a,b,c khác 0 và a+b+c \(\ne\) 0, thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}.\)
Tính giá trị của biểu thứ P = \(\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\)
ai hiểu giải hộ mk nha !!!
1/Cho các số hữu tỉ a,b,c thoả mãn điều kiện a > b và b, c > 0 Chứng minh \(\dfrac{a}{b}\) > \(\dfrac{a+c}{b+c}\)
2/ So sánh 2 số hữu tỉ A=\(\dfrac{5^{2013}+17}{5^{2011}+17}\) và B=\(\dfrac{5^{2011}+1}{5^{2009}+1}\)
cho số hữu tỉ x = 2a + 5/ -2. với giá trị nào của a thì:
a) x là số dương
b) x là số âm
c) x không là số dương và cũng không là số âmcho các số a,b,c thỏa mãn : 3/a+b=2/b+c=1/c+a(gt các tỉ số đều có nghĩa)
Tính giá trị biểu thức : M=2a+3b+2020c/3a+2b-2021c