a, Cho hai số dương x,y . Cmr \(\dfrac{2}{x^2+2y^2+3}\le\dfrac{1}{xy+y+1}\)
b, Cho ba số dương a,b,c thỏa mãn abc=1 . Tìm giá trị lớn ngất của biểu thức
Q=\(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2 +2c^2+3}+\dfrac{1}{c^2+2a^2+3}\)
cho x,y,z thỏa:
x(x-1)+y(y-1)+z(z-1)
1)y=\(\dfrac{2x^2+1}{x^3-5x+4}\)
2)y=\(\dfrac{\sqrt{x-2}}{\left(x-3\right)^3-1}\)
3)y=\(\sqrt{x+2}-\dfrac{2}{\sqrt[3]{x-1}}\)
4)y=\(\dfrac{x^2+2}{\sqrt{x^2-6x+9}}\)
5)y+\(\dfrac{\sqrt{x^2-2}}{x-3\sqrt{x}}\)
6)y=\(\sqrt{1-\sqrt{1+x}}\)
Câu 1 : Cho biểu thức \(P=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\dfrac{1}{\sqrt{x}+1}\right)\)
a ) Rút gọn P
b ) Tìm các giá trị nguyên của x để P < 0
c ) Với giá trị nào của x thì biểu thức \(\dfrac{1}{P}\) đạt GTNN .
Câu 2 :
Giải phương trình sau : \(\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt{x}}=2\)
Câu 3 :
a ) Cho \(x\ge1,y\ge1\) . Chứng minh : \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
b ) Cho hai số tự nhiên m và n thỏa mãng \(\dfrac{m+1}{n}+\dfrac{n+1}{m}\) là số nguyên . Chứng minh rằng :
Ước chung lớn nhất của m và n ko lớn hơn \(\sqrt{m+n}\)Akai Haruma
Cho A = \(\left\{y\in Z|y=\dfrac{2x+3}{x-2};x\in Z|\right\}\). Liệt kê các phần tử của A
Cho x>0
Cmr : \(\left(1+x\right)^2\left(\dfrac{1}{x^2}+\dfrac{2}{x}+1\right)\ge16\)
P/s : con thấy bài này ngáo ngáo sao ý
\(\left(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\right):\dfrac{2-4x}{x+1}\)
a. Tìm điều kiện xác định và rút gọn
b. Tìm x để A >1
c. tìm GTLN của: B= A. \(\dfrac{3x}{x^2+2}\)
Tìm điều kiện của x để :
a , \(\dfrac{2}{x-1}\)là số hữu tỉ âm
b , \(\dfrac{-5}{x-1}\)là số hữu tỉ âm
c , \(\dfrac{7}{x-6}\)là số hữu tỉ dương
d , \(\dfrac{x+2}{x-6}\)là số hữu tỉ dương
Cho các số dương a1,a2,...,an có tổng là 1 vá b1,b2,...,bn là hoán vị của a1,a2,...,an.
Tìm GTNN của P=\(a_1\sqrt{\dfrac{a_1}{1-b_1}}+a_2\sqrt{\dfrac{a_2}{1-b_2}}+...+a_n\sqrt{\dfrac{a_n}{1-b_n}}\)