Biến đổi tương đương:
\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2\ge4ab+4ac\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+2a^2\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+2a^2\ge0\) (luôn đúng)
Vậy BĐT ban đầu được chứng minh
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}a=0\\a-2b=0\\a-2c=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c=0\)