Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Angela jolie

Cho ba số a,b,c thỏa mãn a+b+c=0 và |a| ≤ 1, |b| ≤ 1, |c| ≤ 1. Chứng minh rằng a4+b6+c8 ≤ 2

Nguyễn Việt Lâm
22 tháng 10 2019 lúc 22:28

Do \(-1\le a;b;c\le1\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)+\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)

\(\Leftrightarrow1-abc-a-b-c+ab+bc+ca+1+abc+b+c+c+ab+bc+ca\ge0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)+2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)+2\ge a^2+b^2+c^2\)

\(\Leftrightarrow\left(a+b+c\right)^2+2\ge a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2\le2\)

\(\left|a\right|;\left|b\right|;\left|c\right|\le1\Rightarrow\left\{{}\begin{matrix}a^4\le a^2\\b^6\le b^2\\c^8\le c^2\end{matrix}\right.\)

\(\Rightarrow a^4+b^6+c^8\le a^2+b^2+c^2\le2\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(-1;0;1\right)\) và các hoán vị

Khách vãng lai đã xóa

Các câu hỏi tương tự
Gia An Ho
Xem chi tiết
yeens
Xem chi tiết
Trần Minh Hải
Xem chi tiết
Thành Trương
Xem chi tiết
Hà Thị Băng Châu
Xem chi tiết
Toankhowatroi
Xem chi tiết
Bolbbalgan4
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
Quân Lê
Xem chi tiết