Từ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\)
Và \(a+b+c=\sqrt{2017}\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=2017\)
\(\Rightarrow a^2+b^2+c^2+2\cdot0=2017\)\(\Rightarrow a^2+b^2+c^2=2017\)
Vậy \(a^2+b^2+c^2=2017\)
#5k->AccQuỳnh,pls :)
Từ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\)
Và \(a+b+c=\sqrt{2017}\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=2017\)
\(\Rightarrow a^2+b^2+c^2+2=2017\Rightarrow a^2+b^2+c^2=2015\)
Vậy \(a^2+b^2+c^2=2015\)
#5k->AccQuỳnh,pls :)