Tính ta được
1) So Sánh A và B biết :
A = \(\frac{10^{50}+1}{10^{51}+1}\) ; B = \(\frac{10^{51}+1}{10^{52}+1}\)
2) Tìm x biết :
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}-4=0\)
3) Tính giá trị của biểu thức
\(\frac{1}{1.2} +\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{1999.2000}\)
MỌI NGƯỜI LÀM ĐI NHÉ ! CHÚC MỌI NGƯỜI VUI VẺ !
bài 1: tính A:=\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{2}{3}-\frac{1}{2}\)
Bài 2: Cho B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{49}-\frac{1}{50}\)
Chứng minh rằng: \(\frac{7}{12}< A< \frac{5}{6}\)
CMR:
a) \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}< \frac{1}{2}\)
b) \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\)
Chứng minh rằng: \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+......................+\frac{99}{100!}< 1\)
CMR:
a) \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)
b) \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
So sánh: \(1+\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+..............+\frac{2014}{2^{2014}}+\frac{2015}{2^{2015}}\) với 3
a) CM: A2= \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{100}}>10\)
b) CM: A3= \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\frac{4}{5!}+...+\frac{99}{100!}< 1\)
Với mọi số tự nhiên n≥2, hãy so sánh:
a) \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{n^2}\)Với 1
b) \(B=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+......+\frac{1}{\left(2n\right)^2}\)Với \(\frac{1}{2}\)