Bài 1:a) Tìm các cặp số nguyên (x;y) thảo mãn :y2+2xy-3x-2=0
b) Cho x,y thỏa mãn xy≥1.CMR:\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\) ≥ \(\frac{2}{1+xy}\)
Câu 2:
1) Rút gọn biểu thức: \(P=\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\)
2) Cho x, y, z là 3 số nguyên dương đôi một nguyên tố cùng nhau thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\) . Hỏi x+y có là số chính phương không?
Cho các số dương x, y, z thỏa mãn \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Chứng minh rằng: \(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\le\frac{3}{2}\)
Bài 1 :
a) Cho x,y > 0 thỏa mãn \(xy=6\). Tìm min của \(A=x^2+y^2\)
b) Cho x,y > 0 thỏa mãn \(x+y=5\) Tìm max của xy.
Bài 2 :
Cho a,b,c là các số dương. Tìm GTNN của :
\(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 1 :Thực hiện phép tính
a, \(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
b\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
c, \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}\)
d,\(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}\)
Bài 2: Thực hiện phép tính
a,\(\frac{4x+1}{2}-\frac{3x+2}{3}\)
b,\(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
c,\(\frac{x+3}{x^2+1}-\frac{1}{x^2+2}\)
e,\(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)
d,\(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
f,\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
Bài 1:
a) Cho x>y>0 và \(\frac{x^2+y^2}{xy}\)= \(\frac{10}{3}\). Tính giá trị của biểu thức M=\(\frac{x-y}{x+y}\)
b) Tìm giá trị nhỏ nhất của A= \(\frac{5x^2-x+1}{x^2}\), x≠0
Bài 2: Chứng minh rằng:
\(\frac{x-y}{1+xy}\)+\(\frac{y-z}{1+yz}+\frac{z-x}{1+zx}=\frac{x-y}{1+xy}\cdot\frac{y-z}{1+yz}\cdot\frac{z-x}{1+zx}\)
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a) P= x2+3x+3
b) Q= x2+2y2+2xy-2y
a) CMR: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right).\left(x+y+z\right)>=9\) với mọi x, y, z >0
b) Cho các số dương x, y, z thỏa mãn x + y + z <= 3
Chứng minh rằng: \(\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}>=670\)
1.a, cho a,b,c và x,y,z là các số khác 0, thỏa mãn đk a+b+c=0, x+y+z=0,\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\). chứng minh rằng:
\(a^2x+b^2y+c^2z=0\)
b, cho a,b,c là các hằng số và a,b,c≠-1. chứng minh rằng nếu x=by+cz, y=ax+cz, z=ax+by, x+y+z≠0 thì\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
2. giả sử \(a_1,b_1,c_1,a_2,b_2,c_2\) là các số khác 0 thỏa mãn các đk: \(\frac{a_1}{a_2}+\frac{b_1}{b_2}+\frac{c_1}{c_2}=0\) và \(\frac{a_2}{a_1}+\frac{b_2}{b_1}+\frac{c_2}{c_1}=1\)
cmr \(\frac{a\frac{2}{2}}{a\frac{2}{1}}+\frac{b\frac{2}{2}}{b\frac{2}{1}}+\frac{c\frac{2}{2}}{c\frac{2}{1}}=1\)
3. a, biết x,y,z khác 0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). tính gt bt
M=\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
b, biết x,y,z khác 0 và x+y+z=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). cmr
y(\(x^2-yz\))\(\left(1-xz\right)=x\left(1-yz\right)\left(y^2-xz\right)\)
4. cho x,y,z khác 0 và \(\frac{y^2+z^2-x^2}{2yz}+\frac{z^2+x^2-y^2}{2xz}+\frac{x^2+y^2-z^2}{2xy}=1\)
chứng minh rằng trong 3 phân thức đã cho có 1 phân thức bằng -1 và hai phân thức còn lại đều bằng 1
Chứng minh rằng nếu ta có đẳng thức:
\(a\left(b-c\right)x^2+b\left(c-a\right)xy+c\left(a-b\right)y^2=d\left(x-y\right)^2\) trong đó \(a,b,c\ne0\) đúng với mọi x và y thì: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)