a) ĐKXĐ: \(a\ge0;a\ne1;\)
b)\(A=\left(\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\dfrac{\sqrt{a}+1}{a}\)
\(A=\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\dfrac{a}{\sqrt{a}+1}\)
\(A=\dfrac{a-1}{\sqrt{a}}.\dfrac{a}{\sqrt{a}+1}\)
\(A=\left(\sqrt{a}-1\right)\sqrt{a}\)
\(A=a-\sqrt{a}\)
c)\(A=a-2\sqrt{a}\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\)
\(A=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge\left(-\dfrac{1}{4}\right)\)
Vậy A max=\(\left(-\dfrac{1}{4}\right)\)khi a=\(\dfrac{1}{4}\)