ĐKXĐ: \(x>0;x\ne1\)
\(A=\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(x=36\Rightarrow\sqrt{x}=6\Rightarrow A=\frac{6-1}{6}=?\)
\(x=17-2\sqrt{30}=\left(\sqrt{15}-\sqrt{2}\right)^2\Rightarrow\sqrt{x}=\sqrt{15}-\sqrt{2}\)
\(\Rightarrow A=\frac{\sqrt{15}-\sqrt{2}-1}{\sqrt{15}-\sqrt{2}}=\frac{13-\sqrt{15}-\sqrt{2}}{13}\)
\(A>0\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}}>0\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)
\(\left|A\right|>A\Leftrightarrow A< 0\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< 0\Rightarrow\sqrt{x}-1< 0\)
\(\Rightarrow0\le x< 1\)