\(A=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
Dấu giữa 2 biểu thức là dấu chia sẽ hợp lý hơn
Khi đó \(A=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
\(A>\frac{1}{6}\Rightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}>\frac{1}{6}\Rightarrow2\sqrt{x}-4>\sqrt{x}\)
\(\Rightarrow\sqrt{x}>4\Rightarrow x>16\)