A=\((\frac{1}{3.8}+\frac{1}{8.13}+...+\frac{1}{33.38})\)
A=\(\frac{1}{5}\left(\frac{5}{3.8}+\frac{5}{8.13}+...+\frac{5}{33.38}\right)\)
A=\(\frac{1}{5}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{33}-\frac{1}{38}\right)\)
A=\(\frac{1}{5}.\left(\frac{1}{3}-\frac{1}{38}\right)\)
A=\(\frac{1}{5}.\frac{35}{114}\)
A=\(\frac{7}{114}\)
B=\((\frac{1}{3.10}+\frac{1}{10.17}+...+\frac{1}{31.38})\)
B=\(\frac{1}{7}\left(\frac{7}{3.10}+\frac{7}{10.17}+...+\frac{7}{31.38}\right)\)
B=\(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{10}+\frac{1}{10}-\frac{1}{17}+...+\frac{1}{31}-\frac{1}{38}\right)\)
B=\(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{38}\right)\)
B=\(\frac{1}{7}.\frac{35}{114}\)
B=\(\frac{5}{114}\)
⇒ \(\frac{A}{B}\)=\(\frac{7}{114}:\frac{5}{114}=\frac{7}{114}.\frac{114}{5}=\frac{7}{5}\)
Vậy \(\frac{A}{B}=\frac{7}{5}\)
A = \(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+....+\frac{1}{33}-\frac{1}{38}\)
=\(\frac{1}{3}-\frac{1}{38}\)
=\(\frac{35}{114}\)
B =\(\frac{1}{3}-\frac{1}{10}+\frac{1}{10}-\frac{1}{17}+...+\frac{1}{31}-\frac{1}{38}\)
=\(\frac{1}{3}-\frac{1}{38}\)
=\(\frac{35}{114}\)
=>tỉ số \(\frac{A}{B}\)= \(\frac{35}{114}:\frac{35}{114}\)=1
A=\(\frac{1}{3.8}+\frac{1}{8.13}+...+\frac{1}{33.38}\)
=\(\frac{1}{5}\left(\frac{5}{3.8}+\frac{5}{8.13}+...+\frac{5}{33.38}\right)\)
=\(\frac{1}{5}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{33}-\frac{1}{38}\right)\)
=\(\frac{1}{5}\left(\frac{1}{3}-\frac{1}{38}\right)\)
=\(\frac{1}{5}.\frac{35}{114}\)
=\(\frac{7}{114}\)
B=\(\frac{1}{3.10}+\frac{1}{10.17}+...+\frac{1}{31.38}\)
=\(\frac{1}{7}\left(\frac{7}{3.10}+\frac{7}{10.17}+...+\frac{7}{31.38}\right)\)
=\(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{10}+\frac{1}{10}-\frac{1}{17}+...+\frac{1}{31}-\frac{1}{38}\right)\)
=\(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{38}\right)\)
=\(\frac{1}{7}.\frac{35}{114}\)
=\(\frac{5}{114}\)
Vì \(\frac{7}{114}>\frac{5}{114}\)
⇒ A > B
Vậy A > B