1) Chứng minh rằng :
S=\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+.....+\frac{3}{14}\)không phải là số tự nhiên
Cho A=\(\frac{1}{1^2}\)+\(\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2013^2}\)
Chứng minh A không phải là số tự nhiên
Cho A = \(\frac{1}{^{^{2^2}}}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}+\frac{1}{2016^2}\)
Chứng minh A không phải là số tự nhiên
Cho A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....\frac{1}{15}+\frac{1}{16}\)
Chứng tỏ rằng A không phải là số tự nhiên
Giúp mk với. Mk còn rất nhìu bài nên lm phiền mấy bạn giúp mk nha
Chứng tỏ:
A=\(\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{2016^2}\) không phải là số tự nhiên.
Bài 1: Chứng tỏ các tổng sau không là số tự nhiên:
a. A= \(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)
b. B= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{8}\)
c. C= \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Bài 2: Chứng tỏ rằng:
a. A= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{20}>\frac{1}{2}\)
b. B=\(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}>\frac{1}{2}\)
c. C= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{100}>1\)
d. D=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
Bài 3: Cho S= \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}.\)Chứng minh rằng \(\frac{3}{5}< S< \frac{4}{5}\)
Bài 4: Cho B= \(\frac{10n}{5n-3}\), tìm số nguyên n để:
a. B có giá trị nguyên b. B có GTLN
Chứng minh :
a) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
b)\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}< \frac{7}{12}\)
c) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh \(1< S< 2\)
Cho A = \(\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}+.......+\frac{n}{5^{n+1}}+.......+\frac{11}{5^{12}}\) với n \(\in\) N. Chứng minh rằng A < \(\frac{1}{16}\)
Giúp mk vs
Cho A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\) (có 2015 số hạng). Chứng minh rằng A>\(\frac{21}{11}\)