\(A=\left(\dfrac{1}{x-1}+\dfrac{x}{x^3-1}.\dfrac{x^2+x+1}{x+1}\right):\dfrac{2x+1}{\left(x+1\right)^2}\)
\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}.\dfrac{x^2+x+1}{x+1}\right):\dfrac{2x+1}{\left(x+1\right)^2}\)
\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{2x+1}{\left(x+1\right)^2}\)
\(=\left(\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{x}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{2x+1}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{x+1}{x-1}\)
Vậy \(A=\dfrac{x+1}{x-1}\)
Giả sử tìm được \(x\in Z\) để \(A\in Z\)
\(x\in Z\Leftrightarrow\left\{{}\begin{matrix}x+1\in Z\\x-1\in Z\end{matrix}\right.\)
\(A=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)
\(\Leftrightarrow2⋮x-1\Leftrightarrow x-1\inƯ\left(2\right)\)
Ta có các trường hợp :
+) \(x-1=1\Leftrightarrow x=2\)
+) \(x-1=2\Leftrightarrow x=3\)
+) \(x-1=-1\Leftrightarrow x=0\)
+) \(x-1=-2\Leftrightarrow x=-1\)
Vậy..