ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
a) Ta có: \(A=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^3}{1-x}+x\right)\cdot\left(\dfrac{1+x^3}{1+x}-x\right)\right]\)
\(=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{\left(1-x\right)}+x\right)\cdot\left(\dfrac{\left(1+x\right)\left(1-x+x^2\right)}{1+x}-x\right)\right]\)
\(=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(x^2+x+x+1\right)\left(x^2-x-x+1\right)\right]\)
\(=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)
\(=\dfrac{x\left(x-1\right)^2\cdot\left(x+1\right)^2}{1+x^2}\cdot\dfrac{1}{\left(x+1\right)^2\cdot\left(x-1\right)^2}\)
\(=\dfrac{x}{1+x^2}\)
b) Thay \(x=-\dfrac{1}{2}\) vào biểu thức \(A=\dfrac{x}{x^2+1}\), ta được:
\(A=\dfrac{-1}{2}:\left[\left(-\dfrac{1}{2}\right)^2+1\right]\)
\(\Leftrightarrow A=-\dfrac{1}{2}:\left(\dfrac{1}{4}+1\right)\)
\(\Leftrightarrow A=-\dfrac{1}{2}:\dfrac{5}{4}\)
\(\Leftrightarrow A=-\dfrac{1}{2}\cdot\dfrac{4}{5}\)
\(\Leftrightarrow A=\dfrac{-4}{10}\)
hay \(A=\dfrac{-2}{5}\)
Vậy: Khi \(x=-\dfrac{1}{2}\) thì \(A=\dfrac{-2}{5}\)
c) Để 2A=1 thì \(A=\dfrac{1}{2}\)
hay \(\dfrac{x}{x^2+1}=\dfrac{1}{2}\)
\(\Leftrightarrow2x=x^2+1\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1(không nhận)
Vậy: Không có giá trị nào của x để 2A=1