tồn tại \(\sqrt{A}\Rightarrow x>4\)
\(B=x^2+14x-5x\sqrt{x}-153\sqrt{x}+452\)
\(B=\left(\sqrt{x}-4\right)\left(x\sqrt{x}-x+10\sqrt{x}-113\right)\)
khi
\(0\le x< 16\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-4< 0\\x\sqrt{x}-x+10\sqrt{x}-113< 64+40-113-x=-9-x< 0\end{matrix}\right.\) B>0
hay B không có nghiệm khi x<16
Kết luận x>16 \(\Rightarrow\sqrt{x}-2>1\Rightarrow\dfrac{1}{\sqrt{x}-2}< 1\Rightarrow A< 1\Rightarrow A^4< A< \sqrt{A}\)