trục căn thức
a) \(\dfrac{1}{\sqrt{x-1}};\dfrac{a+2}{\sqrt{a^2-4}};\dfrac{x-y}{\sqrt{x^2-y^2}};\dfrac{a}{\sqrt{x^2}}\) (n lẻ)
b) \(\dfrac{\sqrt{x^2-1}+1}{\sqrt{x^2-1}-1}\)
c) \(\dfrac{2}{\sqrt{7-2\sqrt{6}}}\)
1 Đúng hoặc Sai,nếu sai thì sửa lại cho đúng
a/\(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\) ; b/\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{10}\) ; c/\(\dfrac{2}{\sqrt{3}-1}=\sqrt{3}-1\) ; d/\(\dfrac{8}{2\sqrt{8}-1}=\dfrac{P\left(2\sqrt{8}+1\right)}{4P-1}\) ; e/\(\dfrac{1}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)
2 Rút gọn các biểu thức
a/\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\) ; b/\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\) ; c/\(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\) ; d/\(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}+\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}}\)
Bài 1: Tính:
\(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
Bài 2: Rút gọn rồi tính:
a) A=\(\dfrac{a^4-4a^2+3}{a^4-12a^2+27},a=\sqrt{3}-\sqrt{2}\)
b) \(B=\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}},h=3\)
c) \(C=\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}x+2},x=2\left(\sqrt{3}+1\right)\)
d) \(D=\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right),a=\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
Mọi người giúp em với!!!!!!!!!!!!!!
Rút gọn
\(A=\dfrac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(B=\dfrac{1}{\sqrt{1}-\sqrt{2}}+\dfrac{1}{\sqrt{2}-\sqrt{3}}+....+\dfrac{1}{\sqrt{n-1}-\sqrt{n}}\) (n thuộc N, n>=2)
\(C=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\dfrac{1}{x}+\dfrac{1}{y}\right).\dfrac{1}{x+y+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\)
a) Rút gọn
b) Tính C với x=2-\(\sqrt{3}\); y=2+\(\sqrt{3}\)
rút gọn
a) \(\dfrac{15}{\sqrt{16}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}-\sqrt{6}\)
b) \(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}\)
a) \(\dfrac{\sqrt{15}-\sqrt{2}}{\sqrt{5}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}\)
b) \(\dfrac{5\sqrt{2}-2\sqrt{5}}{10}\)
Tính:
a, A= \(\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}\)+ \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
b, B= \(\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)+ \(\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
c, C= \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\)
Trục căn thức ở mẫu (giải chi tiết):
F = \(\dfrac{6}{2\sqrt{3}+\sqrt{2}}\)
G = \(\dfrac{1}{\sqrt{a}+b}\)
H = \(\dfrac{2}{\sqrt{a}-\sqrt{b}}\)
K = \(\dfrac{2xy}{2\sqrt{x}+3\sqrt{y}}\)